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Abstract. We study the effect of strong antiferromagnetic exchange interactions in metallic grains in the
Coulomb blockade regime. These interactions can be large in superconducting systems or in metallic
antiferromagnetic particles. We extend the standard description of the grain in terms of a single collective
variable, the charge and its conjugated phase, to include the spin degree of freedom. The suppression of
spin fluctuations enhances the tendency towards Coulomb blockade. The effective charging energy and
conductance are calculated numerically in the regime of large grain-lead coupling.

PACS. 73.23.-b Electronic transport in mesoscopic systems – 73.23.Hk Coulomb blockade; single-electron
tunneling

1 Introduction

Coulomb blockade in metallic grains is a well studied
phenomenon [1,2]. The transport through a grain in the
Coulomb blockade regime can be studied using rate equa-
tions when the coupling to the leads is weak [1,3]. The
renormalization of the charging energy when the coupling
to the leads is large is also well understood [3–6]. This
strongly coupled regime is best studied by introducing a
single collective degree of freedom, the phase, conjugated
to the total number of electrons in the grain Q/e [7–9].
The use of this variable is justified when the separation
between the electronic levels within the grain can be ne-
glected, or, alternatively, when the conductance of the
grain is large. In this limit, the interaction effects within
the grain can be described by a simple Hamiltonian [10],
expressed in terms of the total charge (EC(Q̂−Q0)2), the
total spin (JSS2) and the individual electronic degrees of
freedom.

In the presence of attractive interactions in the grain
a pairing term (λBCST̂ +T̂ , where T̂ =

∑
α cα↑cα↓) should

also be included [11] that will drive the system towards su-
perconducting state with energy gap ∆BCS. In such case
both the pairing λBCS and the exchange JS will grow un-
der renormalization group (integration of energies down
from Thouless energy) to a scale much larger than the
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bare one, which is initially of the order of the level spac-
ing. Moreover due to the attractive character of the in-
teraction, the spin susceptibility due to exchange will be
positive, so that spin fluctuations get suppressed much in
the same way as charge fluctuations do due to the charg-
ing energy. The essential distinction between the two will
stem from the topological differences between spin group
SU(2) and charge group U(1) in which their conjugate
phases exist.

In the following, we will generalize the usual descrip-
tion of a small grain in the Coulomb blockade regime in
terms of phase dynamics [7]. We include also the dynamics
of the total spin of the grain in SU(2), on the same foot-
ing as the total charge. We assume that the grain has a
negligible level spacing and a finite positive renormalized
susceptibility according to the arguments above.

The effects of a constant exchange term on the trans-
port properties of a quantum dot has already been studied
in the limit where the coupling to the leads is weak, us-
ing rate equations [12–14]. The present formalism goes one
step beyond this by summing all processes up to cotunnel-
ing level. However we do not consider here the changes in
the grain susceptibility induced by the spin-orbit coupling
which has been considered by other authors [15].

The next section contains an analysis of systems where
the regime studied in this paper can be achieved. Then we
formulate the model to be studied. The model is analyzed
using path integral methods, which are described in the
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next section. We then present the main results, and the
last section summarizes the main conclusions.

2 Metallic grains with antiferromagnetic
exchange

As mentioned in the introduction, the universal
Hamiltonian proposed for small metallic systems in the
diffusive regime [11] includes a ferromagnetic exchange
term, whose magnitude is of the order of the level spacing
within the grain. This contribution is a generalization of
the direct exchange interaction in atoms and molecules.
Our work here focuses on the collective properties of the
grain, at scales larger than the level spacing. In the fol-
lowing, we discuss two situations where the fluctuations of
the spin of the grain are determined by interactions which
can be much larger than the level spacing.

2.1 Antiferromagnetic metallic grains

There are a variety of materials which exhibit a metal-
lic antiferromagnetic phase at low temperatures. One of
the most studied class of materials which exhibit this
phase are the heavy fermion compounds [16], and the an-
tiferromagnetic metallic — paramagnetic transition is a
well-known example of quantum critical point [17].

The ground state of finite antiferromagnetic clusters
is a singlet. Its excitation spectrum can be split into two
regimes [18]: (i) at low energies, ε � JAF (a/L), where
JAF is the antiferromagnetic coupling between neighbor-
ing spins, a is the lattice constant, and L is a length pro-
portional to the dimension of the system, the spin ex-
citations are global rotations of all the spins mutually
locked into an antiferromagnetic configuration. The ef-
fective Hamiltonian at these scales is a quantum rotor,
equivalent to the spin term to be studied in this article.
The coupling which characterizes the stiffness of the total
spin scales as JS ∼ JAF /Ns, where Ns is the total number
of spins. This coupling scales in a similar way as the level
spacing, ∆ ∼ W/Nel, where W is the width of the conduc-
tion band, and Nel is the total number of electrons in the
conduction band; (ii) at higher energies, ε � JAF (a/L)
the excitations can be described as confined spin waves.

The total spin of the system can be considered a col-
lective variable in regime (i). When JS � ∆, the fluc-
tuations of the total spin take place at frequencies much
larger than the level spacing, and the discussion in the
following sections is applicable. In typical metallic anti-
ferromagnets, JAF ≤ W , although this inequality can be
reversed in heavy fermion metals, with a narrow resonance
at the Fermi level. On the other hand, the number of spins
is related to the number of magnetic ions in the system,
while the total number of electrons is determined by all
the bands at the Fermi level, in a system with many atoms
in the unit cell. Hence, the inequality NS � Nel can be
satisfied in a variety of systems.

Fig. 1. Fourth order coupling term between a normal metal
and a superconductor which describes Andreev processes [19]
(see text for details).

2.2 Superconducting grains

As mentioned in the introduction, in a metallic grain with
attractive interactions, the universal Hamiltonian contains
a pairing term and a spin term with positive exchange,
JS > 0, favoring a singlet ground state. The integration
of high energy electon-hole pairs required to define the
Hamiltonian at low energies lead to the enhancement of
these two terms. If we neglect momentarily the pairing
contribution, we can define an effective Hamiltonian at
temperatures near, or below, the bulk critical tempera-
ture, with JS ∼ ∆BCS � ∆, where ∆BCS is the bulk
superconducting gap and ∆ is the level spacing.

The effect of the pairing term is to reduce phase fluc-
tuations, and to open a gap in the electronic spectrum.
In a completely isolated grain, the quantum fluctuations
of the collective phase are determined by the charging en-
ergy, which leads to the same effective model for a metal-
lic or superconducting grain (see below). The spectrum of
quasiparticle excitations determines the coupling to the
external leads, and, in particular, the long time properties
of the kernel which leads to the damping of charge fluc-
tuations [7]. To second order in the hopping between the
grain and the external lead, a gap in the spectrum of the
grain leads to a short range kernel, with a typical decay
on time scales of the order of the inverse of the super-
conducting gap. Thus, this contribution to the action is
irrelevant for low frequency correlations at temperatures
much below the gap, and will be ignored.

We consider here grains strongly coupled to the ex-
ternal leads. Then, at fourth order in the hopping be-
tween the grain and each individual channel in the leads,
Andreev reflections lead to a long range (Ohmic) kernel at
long times [19,20]. In the absence of the spin effects con-
sidered here, the effective description of a superconducting
grain strongly coupled to a metallic lead is given by the
same action considered for a single metallic grain [8,9].
The relevant diagram is shown in Figure 1. The quasipar-
ticle Green’s functions in the superconductor decay ex-
ponentially for τ1 − τ2 � ∆−1

BCS and τ3 − τ4 � ∆−1
BCS.

Then, at energy or temperature scales much lower than
∆BCS, we can set τ1 ≈ τ2 ≈ τ and τ3 ≈ τ4 ≈ τ ′. In this



P. San-Jose et al.: Interplay between exchange interactions and charging effects in metallic grains 311

regime, the coupling between the grain and the leads is de-
scribed by an effective action with an ohmic kernel, where
the hopping amplitude entering the coefficient should be
interpreted as the hopping of a Cooper pair.

Thus, when the conductance between the grain and
the leads is determined by Andreev reflections, the anal-
ysis of the spin fluctuations in the grain described below
is applicable. A similar situation can arise when leakage
currents between the grain and the lead exist [21].

In the following, we assume that either the supercon-
ducting gap ∆BCS is much smaller than the renormalized
charging energy, ∆BCS � E∗

C , so that the dissipation
looks ohmic in wide range of frequencies ∆BCS � ω �
E∗

C (like for Al superconducting grains with radii below
100 nm), or that the coupling is sufficiently strong so that
an ohmic current due to Andreev processes cannot be ne-
glected.

3 The model

The Hamiltonian that we study is: H = Hgrain + Hlead +
Hhop

1, where

Hgrain =
∑

i,s

εid
†
i,sdi,s + ECN̂2 + JSS2

Hlead =
∑

k,s

εkc†k,sck,s

Hhop = −t
∑

i,k,s

c†k,sdi,s + H.c. (1)

and N̂ and S are the total number of electrons and
the total spin of the grain, N̂ =

∑
i,s d†i,sdi,s and S =

1/2
∑

i,s,s′ d†i,sσs,s′di,s′ , where σ denotes the Pauli matri-
ces. The grain-dot conductance, in dimensionless units,
can be approximated by α ≈ t2ρgrain(εF)ρlead(εF), where
ρgrain/lead(εF) is the density of states at the Fermi level of
the grain and the lead. As mentioned above, we neglect
the energy dependence of the density of states of the grain.
The only interactions included in equation (1) are through
the total spin and charge of the grain.

4 Path integral formulation

We can integrate out the fermionic degrees of freedom
and obtain a description in terms of collective variables
only by using the path integral formalism. The action is

1 We do not include a possible superconducting pairing term
for simplicity, since as we have argued in the introduction it
gives rise only to a gapped kernel to second order in the single
electron hopping, which we ignore. In fact, in the case of a su-
perconducting grain one should consider the creation operators
in the above model as corresponding to Cooper pairs.

S = S0
grain + Slead + Shop + Sint, where

S0
grain =

∫ β

0

dτ
∑

i,s

d̄i,s (∂τ + εi − µgrain) di,s

Slead =
∫ β

0

dτ
∑

k,s

c̄k,s (∂τ + εk − µlead) ck,s

Shop = −t

∫ β

0

dτ
∑

i,k,s

d̄i,s ck,s + H.c.

Sint = EC(N̂ − Next)2 + JS(S − Sext)2. (2)

We have included an offset electron number Next =
Vgate/eCg induced by a gate voltage Vgate and an offset
spin Sext = Hext/2JS induced by an external magnetic
field Hext, that couples to the total spin.

We can now decouple the quartic interaction term
Sint by means of a Hubbard-Stratonovich transformation
e−Ec(N−Next)

2 ∝ ∫ DV e−V 2/4EC−iV (N−Next), and simi-
larly for S, which introduces a new scalar field V for the
total charge and a vector field H for the total spin. We
then have Sint = S0 + S1, with

S0 =
∫ β

0

dτ

(
V 2

4EC
+

H2

4JS
− iV Next − iH · Sext

)

S1 = i

∫ β

0

dτ
(
V N̂ + H · S

)
. (3)

We now perform a time dependent canonical transforma-
tion (a phase and spin rotation) on the electronic wave-
functions, in order to cancel the term S1 in equation (3).
This U(1) × SU(2) transformation can be written as:

dks(τ) → Uss′(τ) dks′ (τ)

U(τ) = eiφ(τ) e
i
2 ξ(τ)n̂(τ)·σ. (4)

The transformation is parametrized by the angles φ(τ)
and ξ(τ), and by the three dimensional unitary vector
n̂(τ). The requirement that S1 in (3) is cancelled implies:

(∂τU)U † = iV +
i

2
H · σ (5)

so that V = φ̇ and

H = ξ̇ n̂ + sin ξ ˙̂n + (1 − cos ξ) ˙̂n × n̂. (6)

These identities provide an alternative and convenient
parametrization of the auxiliary fields V and H , repre-
sented now by the φ, ξ, n̂ fields, which will be used in
the following. Note that the U(1) gauge transformation
needed to replace V by the phase φ leads to the standard
description of charging effects in terms of phase fluctua-
tions. It is interesting to note that equation (6) implies
that H is proportional to the angular momentum of a
sphere, considered as a rigid body [22]. The periodicity
in imaginary time of the arguments in the action implies
that U(0) = U(β). This constraint implies the usual quan-
tization of the charge in the grain, and also of the spin
(see below), due to the discreteness of transport events.
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A more compact notation for the transformation in
equation (4) can be given in terms of the following, τ
dependent, two- and four-dimensional unit vectors:

ûτ = (sin φτ , cosφτ )

v̂τ =
(

n̂τ sin
1
2
ξτ , cos

1
2
ξτ

)

. (7)

We can use these vectors to write S0 as:

S0 =
∫ β

0

dτ

{
(∂τ û)2

4EC
+

(∂τ v̂)2

4JS

}

(8)

where external gates and fields have been taken as zero for
the moment. The transformation in equation (4) modifies
also the lead-grain coupling, Shop:

Shop = −t

∫ β

0

dτ
∑

i,k,s,s′
c̄k,s Us,s′ di,s′ + H.c. (9)

A final step to obtain the effective action for the rotor
fields is to integrate out the fermionic fields to order t2,
using 〈e−Shop〉0 = e−

1
2 〈S2

hop〉0+O(t4). One obtains the fol-
lowing dissipation term:

Sdiss = −α

4

∫ β

0

dτ

∫ β

0

dτ ′ K(τ − τ ′)Tr
[
U †

τ Uτ ′ + U †
τ ′Uτ

]

(10)
where K(τ) = −[Glead(τ)Ggrain(−τ)]/[ρlead(εF)ρgrain(εF)]
= (πT )2/ sin2(πTτ), Glead and Ggrain being the lead and
grain unperturbed Green’s functions in imaginary time.
Recall here the that the finite range that the supercon-
ducting gap could bring in is assumed larger than the de-
cay time of the phase correlators which is of order E∗

C ,
so that the gapless K(τ − τ ′) of the normal state yields
equivalent results. Sdiss may be finally recast as

Sdiss = α

∫ β

0

dτ

∫ β

0

dτ ′ K(τ −τ ′)
[
1−(ûτ · ûτ ′) (v̂τ · v̂τ ′)

]
. (11)

This term is sufficient to account for second order tun-
nelling processes, and in particular it can describe cotun-
nelling features. The derivation is valid when the conduc-
tance between the grain and the electrode per channel is
small, and it can be used even if the total value is large.

The method leading to equation (11) can be easily gen-
eralized to the case with a spin dependent density of states
in the grain or in the leads. The effective action will con-
tain terms involving sin(ξτ + ξτ ′) which break the symme-
try between the four components of the vector v̂τ . These
terms are analogous to the Josephson term which arises
in the charge dynamics when the leads, or the grain are
superconductors [7].

The final action is Seff = S0 + Sdiss,written in terms
of the dynamical variables ûτ and v̂τ only. In the limit
JS = 0, the field v̂τ can be taken as a constant, and the
model reduces to the standard phase only model.

5 Results

It is instructive to analyze first the decoupled grain, de-
scribed by S0 in equation (8), to see where this spherical
rotor description of the total spin comes from. As men-
tioned above, S0 contains the usual phase term, which
leads to the quantization of the charge, and a contribution
which is equivalent to that of a rigid rotor, and which leads
to the conservation of spin. The eigenvalues associated to
S0 can be written as EN,S,Sz,K = ECN2 + JSS(S + 1),
where N = 0, 1, 2 ..., S = 0, 1, 2 ..., −S ≤ Sz ≤ S
and −S ≤ K ≤ S.2 The degeneracy of a given state is
(2S +1)2 [22]. This degeneracy can be understood by not-
ing that, in the limit studied here, the level spacing within
the grain can be neglected. The grain energy is solely de-
termined by the total charge and the total spin. Let us
assume that, in the neutral dot, there are N0 spin 1/2
electrons which contribute to the total spin. The number
of states of total spin S (each with degeneracy 2S + 1) is:

CN0
S =

(
N0

N0
2 − S

)

−
(

N0
N0
2 − S − 1

)

. (12)

In the limit of many electrons N0 → ∞, one obtains
limN0/S→∞ CN0

S = (2S + 1)CN0 , where CN0 = 2N0+3/2
√

πN
3/2
0

is a constant independent of S. This means that the total
degeneracy of a state composed of many 1/2 spins and
given value of the total spin momentum 〈Ŝ2〉 = S(S + 1)
is CN0(2S + 1)2, just as CN0 rigid rotors with total angu-
lar momentum S. The existence of this degeneracy leads
to a prefactor in the free energy which is independent of
the angular momentum. This multiplicity, like similar de-
generacies in the case of ordinary Coulomb blockade, does
not affect the effects associated to the spin gap discussed
in this paper.

The following calculations including the full action Seff

have been done by averaging over all paths in the unit cir-
cle parameterized by û and the four-dimensional sphere
which defines v̂, using an extension of the Monte Carlo
code developed earlier for related problems [23,6]. The
effective charging energy is calculated by summing over
winding numbers of the phase. The conductance between
the grain and the electrode has been approximated by
the expression G(β/2) [23,24], valid at low temperatures,
where G is the correlation function, in imaginary time, of
the variable v̂τ ûτ . The latter combination describes the
transfer of a full electron to the grain. We calculate, sepa-
rately, the correlations Gu = 〈ûτ · ûτ ′〉 and Gv = 〈v̂τ · v̂τ ′〉
which correspond to charge only and spin only currents.

The current correlation functions are shown in Fig-
ure 2. It is interesting to note that both 〈ûτ · ûτ ′〉 and
〈v̂τ · v̂τ ′〉 decay exponentially, while the composite corre-
lation 〈ûτ · ûτ ′ v̂τ · v̂τ ′〉 decays as (τ − τ ′)−2, as required

2 Note that the extra degenerate quantum number K re-
spect to the usual spin S degeneracy is due to the fact that
we are dealing with the orientations of a sphere, which are
more numerous that the orientations of a spin (there are three
Euler angles versus the two spherical coordinates of the Bloch
sphere).
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Fig. 2. Charge-charge, spin-spin and electron-electron current
correlations (see text) versus inverse temperature for α = 0.3
and different values of JS.

by Griffith’s inequality [25]. The differences between the
phase-phase, “rotation-rotation” and current-current cor-
relations is reminiscent of the behavior of a Luttinger liq-
uid. It implies that the electron current cannot be factor-
ized into its spin and charge components. The exponen-
tial decay of the correlations associated with the collective
charge and spin degrees of freedom can be understood as
the effect of a charge and spin gap in the grain. It can
be obtained by making a mean field decoupling of the
variables, in a similar way to the calculation for charg-
ing effects in coupled grains [26]. The (τ − τ ′)−2 decay of
the current-current correlation describes the cotunnelling
processes at low temperatures.

The effective charging energies, as functions of α and
JS , are shown in Figures 3 and 4. The effect of a finite JS

on the renormalized charging energy is significant, even
for small values of JS . We can estimate analytically this
effect, by assumming that when JS → 0 the fluctuations in
the variable v̂τ are small. The effect of these fluctuations
on the variable ûτ can be approximated by replacing α in
equation (11) by α 〈|v̂|2〉. Assuming that the fluctuations
of v̂τ are harmonic, we find:

〈|v̂|2〉 ≈ 1 −
∫ Λ

EC

dω

ω2/2JS
≈ 1 − JS

EC
(13)

where Λ is a high energy cutoff, comparable to the elec-
tronic bandwidth. Then, using the well-known expression
for the renormalized charging energy for large values of α
[3,4]: E∗

C ≈ EC exp
{−2π2α (1 − JS/EC)

}
. This enhance-

ment of the effective charging energy by a spin gap is an-
other manifestation of the non-separability of charge and
spin.

6 Conclusions

We have analyzed the influence of the exchange term in a
small superconducting grain on the charging effects in the
regime where the superconducting gap is smaller or com-
parable to the charging energy. The suppression of the
spin susceptibility reduces large fluctuations in the spin of

Fig. 3. Renormalized charging energy of the grain in the pres-
ence of a finite spin gap JS , versus the dimensionless grain-lead
coupling α. Note that the decay becomes less pronounced for
growing spin gap.

Fig. 4. Renormalized charging energy of the grain in the pres-
ence of a finite spin gap JS , versus the value of the spin gap
JS. Note the saturation for large JS .

the grain, and enhances the tendency towards Coulomb
blockade. Our analysis integrates out the electronic de-
grees of freedom in the grain and in the external leads,
and provides a simple description in terms of the charge
and spin degrees of freedom of the grain only.

The effects of the exchange term have been analyzed
for closed quantum dots, which are almost decoupled from
the leads [12–14]. Our scheme provides a generalization
which is non-perturbative in the coupling strength in the
sense that one can recover exponential effects in the cou-
pling, such as the renormalization of the charging energy,
which cannot be derived from the addition of sequential
processes.

A statistical approximation to the electron-electron in-
teractions in a small dot predicts that the bare exchange
term is negative and of the order of the separation be-
tween electronic levels [10,27]. Our analysis, on the other
hand, is valid only when the exchange term is positive
and larger than the level spacing. This regime corresponds
to systems with an attractive electron-electron interaction
near a superconducting transition, when the exchange J
is significantly enhanced [28], or, alternatively, to antifer-
romagnetic metallic grains. Spin fluctuations in grains in



314 The European Physical Journal B

this regime can therefore have a strong influence on charge
fluctuations, restoring the system to a Coulomb blockade
regime even when the coupling to the leads is strong.

Two of us (P.S.J. and F.G.) are thankful to MCyT (Spain) for
financial support through grant MAT2002-0495-C02-01.
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